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Abstract—The Internet of Things (IoT) is increasingly influen-
tial in transforming various sectors, including agriculture, by pro-
viding cost-effective sensors and easily deployable infrastructure.
This adoption is revolutionizing the management of agricultural
activities, shifting from traditional practices to data-centric and
automated decision-making processes. Machine learning (ML)
algorithms are integral to this transformation, particularly in
predicting and forecasting weather conditions critical for agricul-
ture. However, ML algorithms’ high computational and memory
demands pose significant challenges for small IoT devices. The
Emergence of Edge Devices with High Computation Capabilities
may be a feasible solution. This paper proposes a drone-based
weather prediction system designed to automate agriculture’s
weather prediction and decision-making process. The DL/ML
model may be trained on historical weather at high-computation
facilities, and this pre-trained model is deployed on the drone-
mounted edge node. The edge node-based DL/ML pre-trained
model, integrated with IoT sensors, processes real-time weather
data to make informed actuation decisions. Our experimental
results, focused on rainfall prediction, show that the system
achieves high accuracy, with logistic regression performing best
on the Bikaner dataset and XGBoost excelling on the Australian
data. The precise weather predictions enabled by our system lead
to more accurate agricultural decisions, thereby optimizing the
automation of agricultural processes.

Index Terms—Internet of Things,IoT, Edge Node, Drone,
Weahter Predition, Weather Forecasting, Precision Farming,
Smart Agriculture, Machine Learning.

I. INTRODUCTION

The agriculture sector is one of the primary sources of
income in most developing economies. It not only serves the
financial aspect but also helps to provide food for the growing
population. There is a dire need to enhance agriculture outputs;
however, due to limited arable land, alternative solutions must
be adopted to improve agricultural production. Some cutting-
edge technologies that may enhance overall agri production
growth in current circumstances are the Internet of Things
(IoT), machine and deep learning algorithms, cloud computing
infrastructure, and intermediate infrastructure such as edge,
fog, and mist computing. These technologies can improve
the overall resource and agri-decision management, such as
optimal water cycles and other resource utilization. The IoT
nodes sense the environmental variable and actuate decisions
that help in the water & fertilizer cycles, pest & weed
management, and other resource management. Predicting and
forecasting are essential variables that immensely affect the
outcome of agricultural products. A well-advanced prediction

of weather, undesirable weeds, pests, and nutritional require-
ments may help improve end yield in many ways. Machine
learning and deep learning algorithms-based models can pre-
dict and forecast weather variability and other factors that
may be used for precision agriculture. The high computation
and storage capabilities of cloud computing enable machine
learning and deep learning algorithms to perform efficiently
on large datasets. In a typical scenario, latency hampers the
performance and decisions due to the long distance and limited
bandwidth communication between the IoT nodes and cloud
infrastructure. However, based on input data received through
IoT sensor nodes, the edge node is immediately processed
and delivered back to the IoT network using a trained model
provided by a cloud computing facility[1]. The deployment
of the drone-mounted edge node as a gateway node may
enhance the capabilities of IoT devices in many folds by timely
performance actuation based on delivered agri intelligence by
the drone-mounted edge node. It helps in reducing overall
latency and efficiently optimizes network traffic[2]–[4].

II. BACKGROUND AND RELATED WORK

The IoT is a disrupted technology that enhanced the ef-
ficiency of almost all sectors by many folds[7]–[9]. The
IoT is also widely adopted in the agricultural sector for
precision farming and is one of the most common agricultural
technologies used to optimize and automate operations with
the availability of low-cost and off-shelf plug-and-play sensors
[5], [6]. It helps in optimizing the overall activities and smartly
monitors the key parameters. It automates activities such as
remote monitoring, environmental data collection, actuation,
and other activities such as pest and weed management to
improve the overall yield of crops. The smartly deployed
IoT sensor infrastructure may deliver services for an ex-
tended period by optimizing power consumption and energy
harvestion[10]. The key challenge with IoT infrastructure is
storing and processing the sensed data due to low-cost IoT
hardware’s limited storage and processing capabilities. As a
result, to drive viable decisions using sensed data, the data
must be stored and processed with a high computation facility.
Recently, researchers have proposed innovative ideas for using
intermediatory processing and storage hardware such as mist,
fog, and edge computing devices based on the processing
and storage capacity requirement. Integrating IoT and cloud
computing through intermediate layers such as edge, fog, and



mist, the data flow from the sensor to final consumption is
highly streamlined [1], [11]. Deploying the drone-mounted
edge, fog, and mist nodes as gateway nodes may enhance
the capabilities of implementing actuation decisions for IoT
devices. It helps in reducing overall latency and efficiently
optimizes network traffic. It offers processing capacity locally
closer to data generation and provides fast and almost real-
time responses and decision-making using machine learning
algorithms. The machine learning algorithm is a mathematical
representation of an output function based on some input func-
tion. It can create a predictive or classification model based on
the training data. Due to their role in analyzing historical data,
building predictive models, and making accurate predictions,
machine learning algorithms play a significant role in weather
forecasting, using the capability of handling vast amounts
of data and identifying underneath patterns and connections
between various weather indicators. The Ensemble method, a
set of combinations of many models, is deployed to enhance
the system’s overall accuracy. The machine learning model is
updated based on input received in real-time monitoring data.
The machine learning models’ capabilities help determine the
overall weather and uncertainty. The prediction is based on the
current atmospheric variable and previous training data[12]–
[14].

III. FRAMEWORK AND METHODOLOGY

The major hardware parts of the infrastructure are IoT
sensors, actuator nodes, weather stations, drone-mounted edge
nodes, cloud computing or high-capacity processing facilities,
and storage facilities. The software part of the infrastructureate
are (i). Data preprocessing, (ii). Model training on the histori-
cal data at a cloud computing facility or high data processing
facility, (iii). Model deployed on a drone-mount edge node,
and (iv). periodically, the model is retrained on environmental
and historical data. The IoT devices play a vital role in
precision farming; they are used for sensing and actuation
purposes. The IoT sensor node and weather station may collect
environmental and soil-related data. The weather station and
IoT Senor nodes may have duplicate values depending on the
sensing frequency. We had a high volume of sensed data if
we kept a low sensing frequency. The system may miss vital
data if we keep a low sensing frequency. The drone-mounted
edge node is an intermediate device that acts as a gateway for
IoT nodes. It helps reduce overall latency in data and decision
delivery. The trained model is being deployed on it to take and
deliver decisions to the IoT node in almost real-time without
any latency. The model is trained using deep and machine
learning algorithms such as Logistic Regression(LR), Decision
Tree(DT), Random Forest, Gradient Boosting(GB), XGBoost,
LightGBM, and CatBoost.

The data is captured through sensor nodes and weather
stations. Sometimes, the data may have noise or faulty val-
ues. The sensor and weather station can generate data at
a rapid pace, which often results in duplicate values. The
data is cleaned, integrated, transformed, and reduced before
being fed into the decision support system. We tested several

models for weather forecasting and selected a few highly per-
formed algorithms such as Logistic Regression(LR), Decision
Tree(DT), Random Forest, Gradient Boosting(GB), XGBoost,
LightGBM, and CatBoost. In the Logistic Regression[15], the
probability of an instance belonging to a particular class is
calculated using a sigmoid function. The weights are assigned
to each feature, and the model combines them into the linear
equation. However, the Decision Tree[16] is used in machine
learning for regression and classification. The decision tree
is trained for the best splitting criteria based on available
information. In order to avoid overfitting, it may be pruned.
Random Forest learning algorithm combines multiple decision
trees to make more precise and accurate predictions. It com-
bines random feature selection, multiple decision trees, and
ensemble techniques[17]. The Gradient Boosting approach is
a popular machine-learning approach for noisy data with com-
plex dependencies, such as weather forecasts and recommen-
dation systems. It combines several weak predictive decision
tree-based predictors in order to create a powerful ensemble-
based model[18]–[21]. XGBoost or eXtreme Gradient Boost-
ing is another improved variant of gradient boosting[18]. Just
like gradient boost, it also combines several weak decision
tree-based predictive models to improve accuracy[20]. Light
Gradient Boosting Machine(LightGBM) is another version of
the Gradient boosting model[18] with a faster implimentation
time. It has faster training time and is memory efficient
compared to the Gradient boosting model[22]. Categorical
boosting, or CatBoost, is a machine learning model based on a
gradient boosting[18] approach focusing on categorical data. It
uses greedy methods to limit the feature combination problem.
The CatBoost can handle high-dimension data and missing
data[19], [21].

IV. RESULTS AND DISCUSSION

In this section, we evaluate the performance of the pro-
posed model against existing models in the literature de-
ployed on the Australian Rainfall Weather Dataset(rain in Aus-
tralia)[23]. We also deployed our model on weather datasets
for Bikaner(India) between 1982 and 2021 [24], [25]. The pre-
processed datasets are used to train and evaluate the machine
learning algorithms to develop the model. We compared the
selected machine learning algorithms (Decision Tree, Logistic
Regression, Random Forest, XGBoost, Catboost, LightGBM)

TABLE I: Comparision of Various Machine Learning Models
on Australian Rainfall Weather Data dataset

Measures LR DT RF LGBM Catboost XGB
TT(Sec) 1.93 0.474 20.38 1.627 129.1 49.78
Cohenś
Kappa

0.582 0.720 0.851 0.728 0.877 0.898

Acc.(%) 79.52 86.12 92.65 86.62 93.92 94.96
prec (%) 79.47 86.36 92.76 86.61 94.17 95.15
recall(%) 79.52 86.12 92.66 86.62 93.92 94.96
F1-score 79.46 86.16 92.67 86.61 93.93 94.97



(a) Decision Tree (b) Logistic Regression (c) Random Forest

(d) XGBoost (e) Catboost (f) LightGBM

Fig. 1: ROC AUC Curves

for various performance measurement parameters such as
Train Time(TT), ROC curve & AUC area, accuracy, precision,
recall, and F1-score.

TABLE II: Comparision of Various Machine Learning Models
on Bikaner, India dataset

Measures LR DT RF LGBM Catboost XGB
TT(Sec) 0.14 0.02 0.91 0.10 3.81 0.65
Cohenś
Kappa

0.48 0.42 0.49 0.49 0.52 0.47

Acc(%) 91.29 88.28 90.77 90.83 91.24 90.31
prec(%) 90.29 88.14 89.84 89.92 90.42 89.41
recall(%) 91.29 88.28 90.77 90.83 91.24 90.31
F1-score 90.23 88.21 90.10 90.17 90.65 89.72

The comparison of algorithms for the Australian dataset is
shown in Table I, while the Bikaner dataset is shown in Table
II.From these tables, we can conclude that the system achieves
high accuracy, with logistic regression(91.29%) performing
best on the Bikaner dataset, while decision trees’(88.28%)
performance is worst amongst the tested algorithms. However,
XGBoost(94.96%) excels in the Australian data, and logistic
regression(79.52%) had the lowest accuracy. For the Australian
Dataset, the XGBoost has the highest precision(95.15%),
recall(94.96%), and F1-Score(94.97%), While the logistic re-
gression has the lowest precision(79.472%), recall(79.52%),
and F1-Score(79.46%). For the Bikaner Dataset, the Catboost

had the highest precision(90.42%) and F1-Score(90.65%),
while logistic regression had the highest recall(91.29%). How-
ever, the decision tree had the lowest precision(88.14%),
recall(88.28%), and F1-Score(88.21%). The decision tree is
the fastest algorithm in training, while Catboost is the slowest.
Cohen’s Kappa is in the moderate agreement(0.41– 0.60) range
for all algorithms.

The Receiver Operating Characteristic(ROC) curve and the
Area Under the Curve(AUC) metric are used to evaluate the
algorithm’s performance. Figure 1 shows the ROC and AUC
curves. The curve is more inclined towards Y - the axis and
a higher value of AUC suggests that our proposed model had
strong discriminatory power in predicting output and a high
level of predictive performance. For the Australian weather
datasets, the AUC value of the logistic regression is 78.95% as
a result, it had lower accuracy amongst the selected model. The
remaining machine learning algorithms, i.e., random forest,
XGBoost, and Catboost, had AUC values greater than 90%,
which is reflected in the accuracy of these algorithms.

A. Comparision with existing Models

The results of the proposed model are compared with exist-
ing works to evaluate the overall performance of the proposed
model. We used accuracy as a prime parameter for comparison.
Most of the existing works also deploy two or more two
machine learning algorithms; for simplicity of comparison, we
consider their best-performed machine learning algorithm or



TABLE III: Comparision with Exisitng Weather Prediction
Algorithms

Authors Dataset Model Accuracy
Oswal[13] WAus KNN 85%
Oswal[13] WAus KNN 85%
Deng [26] WAus LR 84.95%
Liu et al. [27] WAus SS Ad-

aBoost
84.77%

Polishchuk et al. [12] WAus RF 85.9%
Sarasa-Cabezuelo [28] WAus NN 84.00%
Mahadware et al. [29] WAus CatBoost 81.37%
Zhao et al. [30] WAus LR,LSTM 85.00%
Baharisangari et al.[31] WAus ANN 84.73%
Dieber et al. [32] WAus XGBoost 85.00%
Yadav et al.[14] WAus XGBoost 86%
Goksu et al.[33] WAus EK-stars 87.15%
This Paper WAus XGBoost 94.96%
This Paper WBkn LR 91.29%

Weather Datasets:WAus :Australian [23] | WBkn:Bikaner[24], [25] |

model. The comparison is shown in the Table III. The proposed
model with the XGBoost algorithm had the highest accuracy
on the Australian Rainfall Weather Data(rain in Australia)[23]
compared to other models or algorithms tested on the same
dataset.

REFERENCES

[1] A. Chaudhary, S. K. Peddoju, and V. Chouhan, “Secure authentication
and reliable cloud storage scheme for iot-edge-cloud integration,”
Journal of Grid Computing, vol. 21, no. 3, p. 35, Jun 2023. [Online].
Available: https://doi.org/10.1007/s10723-023-09672-z

[2] A. Mukherjee, N. Dey, and D. De, “Edgedrone: Qos aware mqtt
middleware for mobile edge computing in opportunistic internet of
drone things,” Computer Communications, vol. 152, pp. 93–108, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0140366419315750

[3] A. Chaudhary, S. K. Peddoju, and K. Kadarla, “Study of internet-
of-things messaging protocols used for exchanging data with external
sources,” in 2017 IEEE 14th International Conference on Mobile Ad
Hoc and Sensor Systems (MASS), 2017, pp. 666–671.

[4] I. Donevski, C. Raffelsberger, M. Sende, A. Fakhreddine, and J. J.
Nielsen, “An experimental analysis on drone-mounted access points for
improved latency-reliability,” in Proceedings of the 7th Workshop on
Micro Aerial Vehicle Networks, Systems, and Applications, ser. Dronet
’21. New York, NY, USA: Association for Computing Machinery, 2021,
p. 31–36. [Online]. Available: https://doi.org/10.1145/3469259.3470489

[5] M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Naeem, “A survey
on the role of iot in agriculture for the implementation of smart farming,”
Ieee Access, vol. 7, pp. 156 237–156 271, 2019.

[6] A. Chaudhary, “A cluster based wireless sensor network deployment for
precision agriculture in dried and arid states of india,” in Proceedings of
the 2014 International Conference on Information and Communication
Technology for Competitive Strategies, ser. ICTCS ’14. New York,
NY, USA: Association for Computing Machinery, 2014. [Online].
Available: https://doi.org/10.1145/2677855.2677915

[7] N. Hossein Motlagh, M. Mohammadrezaei, J. Hunt, and B. Zakeri,
“Internet of things (iot) and the energy sector,” Energies, vol. 13, no. 2,
p. 494, 2020.

[8] A. Chaudhary and S. K. Peddoju, “The role of iot-based devices for the
better world,” in Information and Communication Technology, D. K.
Mishra, A. T. Azar, and A. Joshi, Eds. Singapore: Springer Singapore,
2018, pp. 299–309.

[9] N. Misra, Y. Dixit, A. Al-Mallahi, M. S. Bhullar, R. Upadhyay, and
A. Martynenko, “Iot, big data, and artificial intelligence in agriculture
and food industry,” IEEE Internet of things Journal, vol. 9, no. 9, pp.
6305–6324, 2020.

[10] A. Chaudhary and S. K. Peddoju, “Impact of clustering algorithms and
energy harvesting scheme on iot/wsn infrastructures,” in 2021 IEEE 18th
International Conference on Mobile Ad Hoc and Smart Systems (MASS),
2021, pp. 603–608.

[11] S. Ketu and P. K. Mishra, “Cloud, fog and mist computing in iot: an
indication of emerging opportunities,” IETE Technical Review, vol. 39,
no. 3, pp. 713–724, 2022.

[12] B. Polishchuk, A. Berko, L. Chyrun, M. Bublyk, and V. Schuchmann,
“The rain prediction in australia based big data analysis and machine
learning technology,” in 2021 IEEE 16th International Conference on
Computer Sciences and Information Technologies (CSIT), vol. 1. IEEE,
2021, pp. 97–100.

[13] N. Oswal, “Predicting rainfall using machine learning techniques,” arXiv
preprint arXiv:1910.13827, 2019.

[14] K. Yadav, A. Singh, and A. K. Tiwari, “Improvements in weather
forecasting technique using cognitive internet of things.” Computer
Systems Science & Engineering, vol. 46, no. 3, 2023.

[15] D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein, and M. Klein, Logistic
regression. Springer, 2002.

[16] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier
methodology,” IEEE transactions on systems, man, and cybernetics,
vol. 21, no. 3, pp. 660–674, 1991.

[17] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32,
2001.

[18] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[19] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
“Catboost: unbiased boosting with categorical features,” Advances in
neural information processing systems, vol. 31, 2018.

[20] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[21] A. V. Dorogush, V. Ershov, and A. Gulin, “Catboost: gradient boosting
with categorical features support,” arXiv preprint arXiv:1810.11363,
2018.

[22] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in neural information processing systems, vol. 30, 2017.

[23] Kaggle. Rain in Australia. https://www.kaggle.com/datasets/jsphyg/
weather-dataset-rattle-package , accessed on 15-Jun-2023,.

[24] NASA. NASA Power Project. https://power.larc.nasa.gov/, accessed on
15-Jun-2023,.

[25] imdlib. imdlib 0.1.17. https://pypi.org/project/imdlib/ , accessed on 15-
Jun-2023,.

[26] F. Deng, “Research on the applicability of weather forecast
model—based on logistic regression and decision tree,” in Journal of
Physics: Conference Series, vol. 1678, no. 1. IOP Publishing, 2020, p.
012110.

[27] X. Liu, S. Luo, and L. Pan, “Robust boosting via self-sampling,”
Knowledge-Based Systems, vol. 193, p. 105424, 2020.

[28] A. Sarasa-Cabezuelo, “Prediction of rainfall in australia using machine
learning,” Information, vol. 13, no. 4, p. 163, 2022.

[29] A. Mahadware, A. Saigiridhari, A. Mishra, A. Tupe, and N. Marathe,
“Rainfall prediction using different machine learning and deep learning
algorithms,” in 2022 2nd Asian Conference on Innovation in Technology
(ASIANCON). IEEE, 2022, pp. 1–8.

[30] Y. Zhao, H. Shi, Y. Ma, M. He, H. Deng, and Z. Tong, “Rain prediction
based on machine learning,” in 2022 8th International Conference on
Humanities and Social Science Research (ICHSSR 2022). Atlantis
Press, 2022, pp. 2957–2970.

[31] N. Baharisangari, K. Hirota, R. Yan, A. Julius, and Z. Xu, “Weighted
graph-based signal temporal logic inference using neural networks,”
IEEE Control Systems Letters, vol. 6, pp. 2096–2101, 2021.

[32] J. Dieber and S. Kirrane, “A novel model usability evaluation frame-
work (muse) for explainable artificial intelligence,” Information Fusion,
vol. 81, pp. 143–153, 2022.

[33] G. Tuysuzoglu, K. U. Birant, and D. Birant, “Rainfall prediction using
an ensemble machine learning model based on k-stars,” Sustainability,
vol. 15, no. 7, p. 5889, 2023.


